
A Tutorial on Multiple Integrals 

(for Natural Sciences / Computer Sciences Tripos Part IA Maths) 

 

Corrections to Dr Ian Rudy (http://www.robinson.cam.ac.uk/iar1/contact.html) please. 

 

This tutorial gives some brief examples of where multiple integrals arise in science, 

and then tackles the issue which causes most confusion for students: how to work out 

the limits on the integrals when integrating over a given region. 

 

1. Some Examples 

 

(a) The multiple integral 
R

dzdydx  over some region of three dimensional space R 

represents the volume of the region R. In this example, the integrand (the function we 

are integrating) is equal to one.  

 

(b) If the integrand is not simply one, then we might get something like 

 
R

dzdydxzyx ,, . If  zyx ,,  is the mass density at any point within the region 

R, then the multiple integral represents the total mass within the region R. In effect, 

one is multiplying density by volume to get the mass, but allowing for the fact that the 

density might vary over the region. If  zyx ,,  is the charge density rather than the 

mass density, then the multiple integral represents the total charge contained within 

the region. 

 

(c) The multiple integral  
R

dydxyxz ,  can be regarded as the volume under a 

surface  yxz ,  within a two dimensional region of the xy-plane R. 

 

 

2. How to Find the Limits 

 

The process that students most struggle with at first is how to find the limits on the 

integrals, given a region. There exists a systematic method for doing this, and if you 

follow it, you should get the correct answer; if you do not follow it, you may well not 

get the correct answer. We will take a specific example to demonstrate. Imagine we 

wish to find the volume under the surface yxz   within the region shown below: 
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Figure 1 

 

We can imagine making up the volume from a set of volume elements, each of height 

yxz   and base dimensions ∆x and ∆y. Viewed from above, one element would 

look like this: 
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and from the side: 

 

 

 

 

Figure 2 

 

The volume would then be the sum of the volumes of the elements needed to cover 

the entire region: 

 

  
y x

yxyx  

 

We can carry out both summations using integration, by allowing x  and y  to tend 

to zero. But we have to be careful of the limits on the integrals. Let's assume we 

choose to do the x-sum (ie x-integral) first. We'll also do it y-first later on. 

 

Imagine that we replicate the element so that we make a line of elements, stretching in 

the x-direction: 
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Figure 3 

 

Ask yourself: what is the minimum x of these elements, and what is the maximum x 

of these elements? The minimum is 0 and the maximum is  y12 . Note that the 

maximum is not 2: it depends on where the line of elements is on the y-axis. This 

procedure gives us the limits for the integral in x. 

 

To find the y-limits, we now imagine our single line of elements above being 

replicated to cover the entire region: 
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Figure 4 

 

Ask yourself: what is the minimum y of these lines of elements, and what is the 

maximum y of these lines of elements? The minimum is 0 and the maximum is 1. 

This gives us the limits for the integral in y. Hence the overall integral is: 
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When evaluating the integral, we do the x-integral first. When reading an expression 

like the one above, do not be fooled into thinking that the y-integral is done first 

because its integral sign comes first. We do the inner integral first, and then the outer 

integral. While we are doing the x-integral, we regard y as a constant, which is 

consistent with Figure 3. So we get: 
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If instead we chose to do the y-sum (ie the y-integral) first, then the procedure for 

finding the limits consists of imagining a line of elements along y for some fixed x: 
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Figure 5 

 

That would give us a minimum y of 0 and a maximum y of 2/1 x . We would then 

replicate the lines of elements to make it cover the region: 

 

0

1

0 1 2

x

y

 
 

Figure 6 

 

The minimum x is 0 and the maximum x is 2. So the integral is: 
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The two routes (x-first and y-first) must give the same answer. Sometimes one is 

quicker than the other, and occasionally one is simply not feasible when the other is, 

so you may need to choose the order of integration with care. 

 

 

3. Multiple Integrals in non-Cartesian Coordinate Systems 

 

Although the examples above all use the Cartesian coordinate system, it is common to 

switch to a different coordinate system to do multiple integrals. The reason for this is 

that the integrals may be difficult in Cartesians. For example, if one wishes to 

integrate 22 yx  over a unit circle, following the procedure above, the limits would 

be 21 yx   to 21 yx   and then y = -1 to +1. After substituting in the x-

limits, one is left with an unpleasant integral in y. By contrast, if one does the integral 

in plane polars, then the limits are much simpler. One can still use the conceptual 

process described above. Firstly, imagine a single plane polar element within the 

circle: 
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Figure 7 

 

Then replicate the element, firstly in the r-dimension to produce a line of elements, 

and then in the θ-dimension to cover the whole circle. The r-limits are simply 0 to 1 



and the θ-limits are 0 to 2π. We can replace the integrand 22 yx   with 2r . But what 

do we replace dx dy with? A rigorous answer to this question turns out to be 

complicated, but a simple procedure will give us the answer. In Figure 7, one can see 

that the sides of the element are of length Δr and rΔθ, and if Δr and Δθ are very small 

then the element is approximately rectangular. So its area is Δr rΔθ, or rΔrΔθ. It turns 

out that if we simply replace dx dy with rdrdθ, we get the correct integral: 
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At this point we could do the r integral, followed by the θ integral, or we can speed 

things up a little by noticing that the limits are constants. This allows us to split the 

double integral into a product of one dimensional integrals, and process them in 

parallel: 
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